
2.1 - TRASMISSIONE DEL CALORE ATTRAVERSO STRUTTURE

Il flusso termico Qt che attraversa in condizioni di regime stazionario l'unita' di superficie di una struttura soggetta ad un gradiente di temperatura DT dipende da un coefficiente globale di trasmissione K detto anche trasmittanza unitaria. La trasmittanza unitaria è legata alle caratteristiche del materiale costituente la struttura ed alle condizioni di scambio termico liminare; fisicamente rappresenta la facilità con cui il calore riesce a trasferirsi da una superficie all'altra della struttura.

Consideriamo una generica struttura costituita da strati di materiale a facce piane parallele ed eventuali intercapedini d'aria interposte tra gli strati

L'energia termica trasferita da A a B vale

$$Qt=K*S*(TA-TB)*t$$
 (J)

in cui la Trasmittanza Unitaria K si ottiene

$$\frac{1}{K} = \frac{1}{Ci} + \sum_{i=1}^{K} \frac{1}{Ci} + \frac{1}{Ci}$$

dove:

 α (W/m2K)

adduttanza unitaria, (somma della irradianza unitaria e della conduttanza unitaria liminare); dipende dalle condizioni di scambio superficiali aria-parete

Si (m)

spessore dello strato i-esimo

lambda(W/mK)	conduttivita' termica del materiale costituente lo strato i-esimo
S i/lambdai	resistenza termica unitaria del materiale costituente lo strato i-esimo
Ci (W/m2K)	conduttanza unitaria dello strato

Per tener conto della diversa insolazione delle pareti, della diversa velocita' e temperatura dei venti è opportuno correggere le dispersioni calcolate maggiorandole con le seguenti percentuali:

esposizione 	S	SO	0	NO	N	NE	Ε	SE	nessuna
correzione %	0	2.5	10	15	25	20	 15	10	0

Definiamo "perdita di calore specifica H" di una struttura il prodotto tra la trasmittanza unitaria e la superficie della struttura stessa

$$H= K*S$$
 (W/K)

la quale rappresenta la potenza termica dispersa da un metro quadrato di struttura quando la differenza di temperatura interno-esterno e' pari ad un grado.

Nelle pagine successive vengono riportati alcuni valori di adduttanza e conduttivita' termica come proposti dalla normativa UNI 7357 e dai suoi aggiornamenti

т.	~ L		~ 4
-12	ab	. 2	2.1

ADDUTTANZE UNITARIE

S:	uperfici interne: superfici orizzontali con flusso di calore ascendente superfici verticali superfici orizzontali con flusso di calore discendente	alfa= 9.28 W/m2K alfa= 8.12 W/m2K alfa= 5.80 W/m2K
Sı	uperfici esterne:	
-	superfici orizzontali con	
	flusso di calore ascendente	alfa= 23.20 W/m2K
-	superfici verticali	alfa= 23.20 W/m2K
-	superfici orizzontali con	
	flusso di calore discendente	alfa= 16.24 W/m2K

Nel caso in cui il vento nella stagione invernale abbia velocita' maggiori di 4 m/s si possono utilizzare le seguenti espressioni empiriche per il calcolo dell'adduttanza esterna

Superficie verticale ed orizzontale con flusso di calore ascendente Superficie orizzontale con flusso di calore discendente

alfa=2+9 $\sqrt{(v)}$

alfa=0.7(2+9 $\sqrt{(v)}$)

Tab. 2.2 - CARATTERISTICHE TERMOIGROMETRICHE DI ALCUNI MATERIALI

Materiale	densita (Kg/m3)	conduttività (W/mK)	calore spec. (KJ/KgK)	diff.vapore adimens.μ
acciaio	7850	45	0.487	2 E6
alluminio	2700	209	0.895	2 E6
amianto cartone	970	0.19	0.837	10
amianto cemento	1900	0.93	0.850	65
ardesia	2700	1 <i>.</i> 97	0.844	1 E4
argilla secca	1780	0.93	0.921	3
asfalto	2100	0.69	0.921	2 E4
basalto	2700	3.48	0.840	1 E4
bitume	1050	0.17	0.220	2 E 4
bronzo	8000	63.90	0.360	2 E6
calcare	1900	1.51	0.837	1 E4
CLS armato	2400	1.51	0.790	70
CLS cellulare	800	0.29	0.837	10
CLS magro	1800	0.93	0.879	20
carbone coke	600	0.18	0.892	-
carbone di legna	240	0.088	1.011	-
carta e cartone	1000	0.16	1.339	20
cartone bitumato	1100	0.18	1.000	7500
caucciù	1100	0.15	0.837	-
ceramica	2400	1.16	0.840	200
cuoio	1000	0.16	2.930	-
dolomite	2670	1.74	0.720	1 E4
ebanite	1190	0.16	1.423	2 E4
fibra di vetro	15-110	0.034	0.837	1
gesso	1240	0.43	0.837	10
ghiaccio	920	2.2	2.114	1
ghiaia	1900	0.93	0.837	5
ghisa	7250	52	0.481	2 E 6
gomma per pav.	1200	0.27	1.423	2 E 4
granito	3000	4.06	0.711	1 E4
gres	1900	1.10	=	200
intonaco esterno	1800	0.86	0.879	20
intonaco interno	1800	0.69	0.879	10
intonaco gesso	1200	0.52	0.879	10
lana minerale	136	0.038	0.753	1

Materiale	densita (Kg/m3)	conduttività (W/mK)	calore spec. (KJ/KgK)	diff.vapore adimens. μ
laterizi comuni	2000	0.93	0.920	6
laterizi da param.	2100	0.116	0.920	5
legno abete	450	1.30	2.732	20
pino	545	0.15	2.721	20
quercia	850	0.20	2.386	20
lastre comp.	320	0.063	1.674	60
legno compensato	545	0.116	1.677	50
linoleum	1200	0.18	1.300	1 E4
marmo	2700	3.37	0.879	1 E4
mica	2700	0.43	0.830	-
neve 7-20 cm	300	0.232	2.100	1
perlite con cem.to	650	0.226	0.840	10
perlite sfusa	120-150	0.044	0.840	5
pomice	390	0.23	0.830	3
pomice con ceme	nto800	0.29	0.830	8
polistirolo espanso	25	0.034	2.302	50
poliuretano espan	so 35	0.025	1.884	70
porcellana piastre	lle2600	1.04	0.921	200
PVC	1420	0.188	1.172	1 E4
sughero granuli	130	0.058	2.009	10
sughero lastre	104-130	0.034	2.009	10
terracotta piastrell	e 1800	0.93	0.840	9
terreno legg. umid	lo 1700	1.74	1.450	-
terreno umido	2000	2.32	1.520	=
vermiculite espans	sa 112	0.068	0.20	3
vermiculite congl.	260	0.084	0.500	8
vetro	2500	0.93	0.800	1 E8

Nella tabella precedente e' riportato anche il "Coefficiente adimensionale di resistenza al passaggio del vapore" μ definito come:

$$\mu$$
 = 187.52 * 10⁻¹² * $\frac{\text{Rv}}{\text{s}}$

in cui:

- 187.52 * 10⁻¹² è la permeabilità dell'aria
- Rv è la resistenza al passaggio del vapore del materiale
- s è lo spessore dello strato di materiale considerato

Tab. 2.3 CONDUTTANZE DI ALCUNI TAVOLATI IN LATERIZIO

tipo elemento	spessore (cm)	conduttanza (W/m²K)
mattone con 1 camera d'aria	4.5	8.2
mattone con 1 camera d'aria	5.5	7.8
mattone con 2 camere d'aria	8	4.2
mattone con 2 camere d'aria	12	3.8
mattone con 3 camere d'aria	15	2.7
muratura di neoforati	12	3.7
muratura di neoforati	25	1.9
muratura di neoforati	38	1.4
muratura di blocchi forati	17	1.6
muratura di blocchi forati	27	1
muratura di blocchi forati	35	0.8
solaio misto SAP	8	6.4
solaio misto SAP	12	3.8
solaio misto SAP	16	3.2
solaio misto SAP	20	2.9

TAB. 2.4 CONDUTTIVITÀ E CONDUTTANZE DI INTERCAPEDINI D'ARIA.


tipo intercapedine	spessore della intercapedine s			
	fino a 10 mm	da 20 a 100 mm		
- strato d'aria orizzontale	lambda=0.00756*s	lambda= 0.00698 s		
flusso di calore ascendente	C= 6.5	C= 6		
strato d'aria orizzontale		lambda= 0.00640*s		
flusso di calore discendente	C= 6.5	C≃ 5.5		
- strato d'aria orizzontale		lambda= 0.00523*s		
	C= 6.5	C= 4.5		

l valori in tabella sono riferiti alle seguenti unità di misura lambda (W/mK); C (W/m2K)

Nel caso in cui lo spessore dell'intercapedine sia superiore a 10 cm è opportuno considerare separatamente le due adduttanze interna ed esterna.

2.1.1 -Esempi pratici di calcolo

- STRUTTURA 1: Parete esterna con isolante interposto ed intercapedine di ventilazione

and an all the State State St

(mm) (W	/mK)
1) intonaco esterno 15 0	.86
2) mattone forato 100 0	.36
3) isolante 60 0.	038
4) intercapedine 40 C= 5.5	W/m2K
5) mattone forato 100 0	.36
6) intonaco interno 15 0	.69

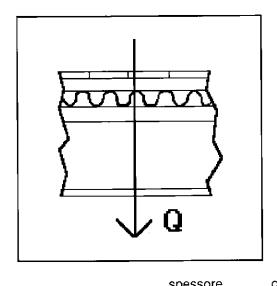
-adduttanza esterna -adduttanza interna

23.20 W/m2K 8.12 W/m2K

-temperatura esterna -5 °C -temperatura interna 20 °C

$$\frac{1}{K} = \frac{1}{23.2} + \frac{0.015}{0.86} + \frac{0.1}{0.36} + \frac{0.06}{0.038} + \frac{1}{5.5} + \frac{0.1}{0.36} + \frac{0.015}{0.69} + \frac{1}{8.12}$$

 $K = 0.396 \text{ W/m}^2\text{K}$


Supponendo di avere 1 m² di superficie disperdente, l'energia dispersa dopo 1 ora vale

$$Q = 0.396*(20+5)*3600 = 35.71 \text{ KJ}$$

mentre la perdita specifica vale

H= 0.396 W/K

- STRUTTURA 2: Solaio su cantinato

	spessore (mm)	conduttività (W/mK)
1) piastrelle	10	1.04
2) sottofondo	30	0.93
3) isolante	30	0.038
4) massetto	40	0.86
5) laterizio	160	0.36
6) intonaco	15	0.86

⁻adduttanza esterna 16.24 W/m2K

$$K = 0.68 \text{ W/m}^2\text{K}$$

Supponendo di avere 1 m² di superficie disperdente, l'energia dispersa dopo 1 ora vale

$$Q=0.68*(20-2)*3600 = 44.06 \text{ KJ}$$

mentre la perdita specifica vale

⁻adduttanza interna 16.24 W/m2K

⁻temperatura esterna 2°C

⁻temperatura interna 20 °C