Premessa



Equazioni valide per un tronco di lunghezza finita compresa tra due sezioni $A e B di ascisse x_1 = a e x_2 = b$

$$N(b) - N(a) = -\int_{a}^{b} q_{t} dx - \sum_{a}^{b} F_{t}$$

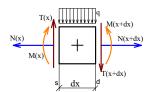
$$T(b) - T(a) = -\int_{a}^{b} q_{n} dx - \sum_{a}^{b} F_{n}$$

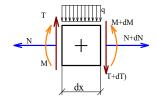
$$M(b)-M(a) = \int_{a}^{b} T dx - \sum_{a}^{b} m$$

Si considerano positive la azioni come riportate nel concio elementare riportato nelle figure che seguono

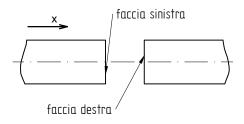
$$\frac{dT}{dx} = -q$$

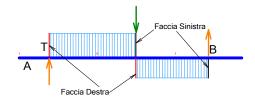
$$\frac{dM}{dx} = T$$





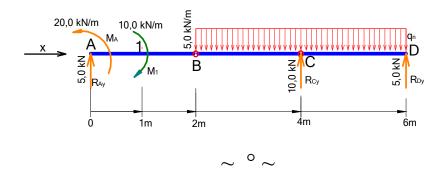
Tagliando un tratto di trave in due tronchi nascono due facce, sinistra e destra,





I grafici riportati faranno riferimento ad una delle due facce secondo lo schema riportato.

Es. 02 Si chiede calcolare le azioni interne: sforzo normale, taglio, momento flettente e disegnare i relativi diagrammi.



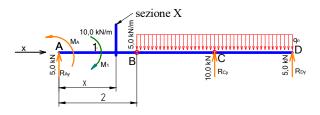
Sforzo normale N

Sulla struttura non agisce nessun carico orizzontale per su cui lo sforzo normale è nullo in ogni sezione

Taglio T

Nella sezione A di ascissa x=0 è applicata la forza $R_{Av} = 5.0 [kN]$ si ha: $T_A = R_{Av} = 5.0 [kN]$

$0 \le x \le 2$



Considerando una sezione generica X posta ad una ascissa x l'equazione generale del taglio è:

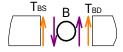
$$T(x)-T(0) = -\int_{0}^{x} q_{n} dx - \sum F_{n}$$

tra x=0 ed x=2 non ci sono né forze concentrate né carichi continui quindi $q_n=0$ e $\sum F_n=0$ si ottiene:

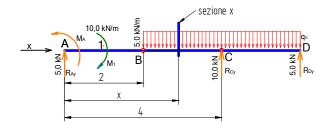
$$T(x) - T(0) = 0 \rightarrow T(x) = T(0) = T_A$$
, il taglio è costante, la sua espressione è: $T(x) = 5[kN]$
 $x = 2$ $T(2) = T_R = 5[kN]$

Il taglio trovato T_{BS} è relativo alla faccia di sinistra ed essendo positivo sarà diretto verso il basso.

Per soddisfare le condizioni di equilibrio della cerniera il taglio T_{BD}, applicato sul lato destro della sezione B sarà diretto verso l'alto e sarà ancora positivo (nel rispetto delle convenzioni sul taglio) come disegnato in figura



$2 \le x \le 4$



In questo tratto è applicato il carico continuo q_n,ma mancano le forze concentrate per cui si ha

$$T(x) - T(2) = -\int_{2}^{x} q_{n} dx$$

$$T(x) - T(2) = -\int_{2}^{x} q_{n} dx \qquad T(x) = T(2) - \int_{2}^{x} q_{n} dx = T_{BD} - \int_{2}^{x} q_{n} dx$$

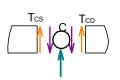
sostituendo i valori

$$T(x) = 5 - \int_{2}^{x} 5 dx = 5 - 5(x - 2) = 5 - 5x + 10$$
 la relazione del taglio è: $T(x) = 15 - 5x$

per
$$x=4$$
 $T(4)=T_C=15-5\cdot 4=-5$

il taglio si annulla nella sezione
$$0 = 15 - 5 x$$
 $x = \frac{15}{5} = 5$

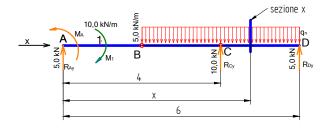
Il taglio T_C è relativo alla faccia di sinistra ed essendo negativo sarà diretto verso l'alto, esso corrisponde al taglio T_{CS} della figura a lato.



Sulla cerniera è applicato la forza R_{cy} , ricordando che vale la relazione $R_{Cy} = T_{CS} + T_{CD}$ si $T_{CD} = R_{Cy} - T_{CS} = 10 - 5 = 5 [kN]$

Il taglio T_{CD} è diretto verso l'alto sarà quindi positivo

$$4 \le x \le 6$$



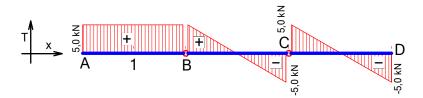
Si può ripetere quanto fatto per il tratto BC per cui si ha:

$$T(x) - T(4) = -\int_{2}^{x} q_{n} dx$$
 $T(x) = T(4) - \int_{4}^{x} q_{n} dx = T_{CD} - \int_{4}^{x} q_{n} dx$

$$T(x) = 5 - \int_{2}^{x} 5 dx = 5 - 5(x - 4) = 5 - 5x + 20$$
 la relazione del taglio è: $T(x) = 25 - 5x$

per
$$x = 6$$
 $T(6) = T_D = 25 - 5 \cdot 6 = -5 [kN]$

Il segno negativo indica che il taglio e diretto verso l'alto, per cui si ha $T_D = R_{Dy}$ come ci si aspettava il taglio si annulla nella sezione 0 = 25 - 5x $x = \frac{25}{5} = 5$



Momento

Nella sezione A è applicato un momento M_A = - 20 [kNm] (negativo in base alle convenzioni adottate)

$$0 \le x \le 1$$

$$M(x) - M(0) = \int_{0}^{x} T_{x} dx$$
 $M(x) = M(0) + \int_{0}^{x} T_{x} dx$

in x = 0 il momento è M_A e ricordando la relazione di T(x) in questo intervallo si ha:

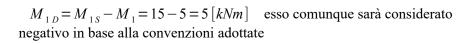
$$M(x) = M_A + \int_0^x T_x dx = -20 + \int_0^x 5 dx = -20 + 5 \cdot (x - 0)$$
 l'espressione del momento è: $M(x) = -20 + 5 x$

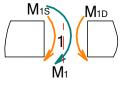
per
$$x = 1$$
 si ha $M(1) = M_1 = -20 + 5 \cdot 1 = -15 [kNm]$

La sezione 1 è in equilibrio per cui si deve avere

$$\sum M = 0$$
 $M_1 = M_{1S} - M_{1D} = 0$

da cui





$1 \le x \le 2$

la relazione del momento è $M(x) - M(1) = \int_{1}^{x} T(x) dx$, con le opportune sostituzioni si ottiene

$$M(x) = M_{1D} + \int_{1}^{x} T_x dx = -5 + \int_{0}^{x} 5 dx = -5 + 5 \cdot (x - 0)$$
 l'espressione è: $M(x) = -5 + 5 x$

per
$$x = 2$$
 si ha $M(2) = M_B = -5 + 5 \cdot 1 = 0 [kNm]$

$$2 \le x \le 4$$

$$M(x) - M(2) = \int_{2}^{x} T_{x} dx$$
 $M(x) = \int_{2}^{x} T_{x} dx$

ricordando la relazione trovata in precedenza T(x) = 15 - 5x e sostituendola nell'integrale

$$M(x) = \int_{2}^{x} (15 - 5x) dx = (15x - \frac{5}{2}x^{2})\Big|_{2}^{x} = (15x - \frac{5}{2}x^{2}) - (15 \cdot 2 - \frac{5}{2} \cdot 2^{2})$$

1'espressione è $M(x) = -20 + 15x - \frac{5}{2}x^2$

per
$$x = 2$$
 si ha $M(2) = M_B = -20 + 15 \cdot 2 - \frac{5}{2} \cdot 2^2 = 0$
per $x = 4$ si ha $M(4) = M_C = -20 + 15 \cdot 4 - \frac{5}{2} \cdot 4^2 = -20 + 60 - 40 = 0$
per $x = 3$ si ha $M(3) = M_2 = -20 + 15 \cdot 3 - \frac{5}{2} \cdot 3^2 = 2,5 [kNm]$

$$4 \le x \le 6$$

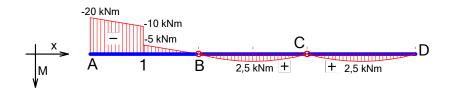
Seguendo un procedimento analogo si ottiene

$$M(x) - M(4) = \int_{4}^{x} T_x dx$$
 $M(x) = \int_{4}^{x} T(x) dx$ vale la relazione $T(x) = 25 - 5x$ e sostituendo

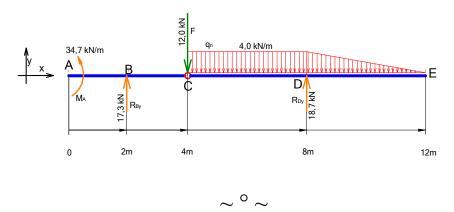
$$M(x) = \int_{4}^{x} (25 - 5x) dx = (25x - \frac{5}{2}x^{2}) \Big|_{4}^{x} = (25x - \frac{5}{2}x^{2}) - (25 \cdot 4 - \frac{5}{2} \cdot 4^{2})$$

1'espressione è $M(x) = -60 + 25 x - \frac{5}{2} x^2$

per
$$x = 4$$
 si ha $M(4) = M_B = -60 + 15 \cdot 4 - \frac{5}{2} \cdot 4^2 = 0$
per $x = 6$ si ha $M(6) = M_C = -60 + 15 \cdot 6 - \frac{5}{2} \cdot 6^2 = -20 + 60 - 40 = 0$
per $x = 5$ si ha $M(5) = M_3 = -60 + 15 \cdot 5 - \frac{5}{2} \cdot 5^2 = 2,5 [kNm]$ momento massimo



Es. 03 Si chiede calcolare le azioni interne: sforzo normale, taglio, momento flettente e disegnare i relativi diagrammi delle azioni interne.



Non essendo applicato nessun carico agente lungo l'asse della struttura gli sforzi Normali sono nulli

Taglio

Nella sezione A di ascissa x=0 non è applicata alcuna forza per cui $T_A=0$ [kN]

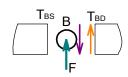
$$0 \le x \le 2$$

Tra le sezioni A e B non ci sono carichi, si ha $q_n=0$ e $\sum F=0$

$$T(x) - T(0) = -\int_{0}^{x} q \, dx = 0$$
 $T(x) = T_{A} = 0 [kN]$

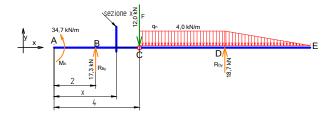
per
$$x = 2$$
 $T(2) = T_R = 0$

Nella sezione B è stato ricavato che il taglio agente sulla faccia sinistra è nullo, in questa sezione si trova la reazione $R_{By} = 17.3 \, [kN]$ dalla relazione $F = T_{BS} + T_{BD}$ si ottiene $T_{BD} = 17.3 \, [kN]$



Si ha
$$T(2)_S = T_{BD} = 17.3 [kN]$$

$2 \le x \le 4$



La relazione del taglio è $T(x)-T(2)=-\int_{2}^{x}q_{dx}$

in questo tratto $q_n = 0$ per cui

$$T(x) = T(2) - \int_{2}^{x} q_n dx = 17.3 + 0 [kN]$$
 il taglio è costante e sarà: $T(x) = 17.3 [kN]$

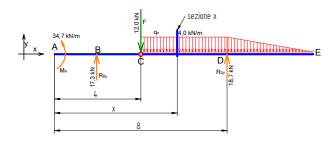
in
$$x = 4$$
 si ha $T(4) = T_C = 17.3 [kN]$

Il taglio T_C è relativo alla faccia di sinistra ed essendo positivo è diretto verso il basso, esso corrisponde al taglio T_{CS} della figura a lato.

Sulla cerniera è applicato la forza F, vale la relazione $F = T_{CS} + T_{CD}$ con riferimento alla figura 0 si ha $T_{CD} = F - T_{CS} = 12 - 17,3 = -5,3 [kN]$

Il segno negativo indica che il verso della T_{CD} deve essere cambiato esso è quindi diretto verso l'alto, per la convenzione sui segni T_{CD} sarà positivo.

$4 \le x \le 8$



In questo tratto è applicato il carico continuo q_n, non ci sono forze concentrate per cui si ha

$$T(x) - T(4) = -\int_{4}^{x} q_n dx$$
 $T(x) = T(4) - \int_{4}^{x} q_n dx = T_{CD} - \int_{4}^{x} q_n dx$

con le opportune sostituzioni si ha:

$$T(x) = 5,3 - \int_{4}^{x} 4 dx = 5,3 - 4(x - 4) = 5,3 - 4x + 16$$
 l'espressione è: $T(x) = 21,3 - 4x$

per
$$x = 8$$
 si ha $T(8) = T_D = 21,3 - 4 \cdot 8 = -10,7 [kN]$

Il taglio T_D è relativo alla faccia di sinistra ed essendo negativo sarà diretto verso l'alto, esso corrisponde al taglio T_{DS} della figura a lato.

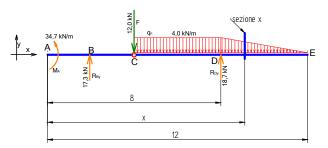
Nella sezione è applicato la forza R_{Dy}, ricordando che vale la relazione

$$R_{Dv} = T_{DS} + T_{DD}$$
 si ha $T_{DD} = R_{Dv} - T_{DS} = 18,7 - 10,7 = 8 [kN]$

Il taglio T_{CD} è diretto verso l'alto sarà quindi positivo

si ha:
$$T(8)_D = T_{DD} = 8[kN]$$

$8 \le x \le 12$



Il carico q_n variabile linearmente che assume valore 4 per x=8 e valore 0 per x=12.

Il suo andamento è lineare e può essere rappresentato come una retta di equazione: $q_x = mx + n$

Sostituendo i valori trovati si ricavano m ed n: $0 = m \cdot 12 + n$ $4 = m \cdot 8 + n$ risolvendo si ottiene m = -1 ed n = 12 quindi: $q_x = -x + 12$

l'espressione del taglio è
$$T(x) - T(8) = -\int_{8}^{x} q_n dx$$
 $T(x) = T(8) - \int_{8}^{x} q_x dx$

sostituendo la relazione trovata di qx:

$$T(x) = T(8) - \int_{8}^{x} (-x + 12) dx = 8 - \left(-\frac{x^{2}}{2} + 12 \cdot x\right) \Big|_{8}^{x} = 8 + \frac{x^{2}}{2} - 12 \cdot x - \frac{8^{2}}{2} + 12 \cdot 8$$

$$I'\text{espressione del taglio è} \qquad T(x) = 72 - 12 \ x + \frac{x^{2}}{2}$$

per
$$x = 8$$
 $T(8) = T_D = 72 - 12 \cdot 8 + \frac{8^2}{2} = 8 [kN]$
per $x = 12$ $T(12) = T_E = 72 - 12 \cdot 12 + \frac{12^2}{2} = 0 [kN]$



Momento

In x =0 agisce il momento $M_A = 34.7$ [kNm] si ha: $M(0) = M_A = -34.7$ [kNm] (negativo in base alle convenzioni adottate)

$$0 \le x \le 2$$

La relazione diventa: $M(x) - M(0) = \int_{0}^{x} T(x) dx$ nell'intervallo[0,2] T(x) = 0

si ottiene $M(x) = M(0) + 0 \cdot x = -34,7 [kNm]$ il momento è costante e vale M(x) = -34,7 [kNm]

per
$$x = 2$$
 $M(2) = M_B = -34,7 [kNm]$

$$2 \le x \le 4$$

il taglio è T(x) = 17.3 [kN]

$$M(x) - M(2) = \int_{2}^{x} T(x) dx$$
 $M(x) = M(2) + \int_{2}^{x} T(x) \cdot dx = -34.7 + 17.34 \cdot (x - 2)$

1'espressione è: $M(x) = -69.4 + 17.34 \cdot x$

in
$$x = 4$$
 $M(4) = M_c = -69,4 + 17,34 \cdot 4 = 0 [kNm]$

$$4 \le x \le 8$$

$$T(x) = 21.3 - 4x$$

$$M(x) - M(4) = \int_{4}^{x} T(x) dx \qquad M(x) = M(2) + \int_{4}^{x} (21.3 - 4x) dx_{C} = 0 + (21.3 \cdot x - 4 \cdot \frac{x^{2}}{2}) \Big|_{4}^{x}$$

$$M(x) = (21,3 \cdot x - 4 \cdot \frac{x^2}{2}) - (21,3 \cdot 4 - 4 \cdot \frac{4^2}{2})$$

$$M(x) = -53,2 + 21,3 \cdot x - 2 \cdot x^2$$

in
$$x=4$$
 $M(4)=M_C=-53,2+21,3\cdot 4-2\cdot 4^2=0$ [kNm]

in
$$x = 8$$
 $M(8) = M_D = -53,2 + 21,3 \cdot 8 - 2 \cdot 8^2 = -10,8 [kNm]$

$8 \le x \le 12$

$$T(x) = 72 - 12 x + \frac{x^2}{2}$$

$$M(x) - M(8) = \int_{8}^{x} T(x) dx \qquad M(x) = M(8) + \int_{8}^{x} T(x) dx = M(8) + \int_{8}^{x} (72 - 12x + \frac{x^{2}}{2}) dx$$

$$M(x) = -10.8 + \left(72 \cdot x - 12 \cdot \frac{x^2}{2} + \frac{1}{2} \cdot \frac{x^3}{3}\right) \Big|_{8}^{x} \qquad M(x) = \left(72 \cdot x - 12 \cdot \frac{x^2}{2} + \frac{1}{2} \cdot \frac{x^3}{3}\right) - \left(72 \cdot 8 - 12 \cdot \frac{8^2}{2} + \frac{1}{2} \cdot \frac{8^3}{3}\right) - 10.8$$

$$M(x) = 72 \cdot x - 6 \cdot x^2 + \frac{x^3}{6} - 288,1$$

in
$$x = 8$$
 $M(x) = M_D = 72 \cdot 8 - 6 \cdot 8^2 + \frac{8^3}{6} - 288, 1 = -10, 8$

in
$$x = 12$$
 $M(12) = M_E = 72 \cdot 12 - 6 \cdot 12^2 + \frac{12^3}{6} - 288, 1 = 0$

